A composite Level Set and Extended-Domain-Eigenfunction Method for simulating 2D Stokes flow involving a free surface
نویسندگان
چکیده
In this paper, the Extended-Domain-Eigenfunction-Method (EDEM) is combined with the Level Set Method in a composite numerical scheme for simulating a moving boundary problem. The liquid velocity is obtained by formulating the problem in terms of the EDEM methodology and solved using a least square approach. The propagation of the free surface is effected by a narrow band Level Set Method. The two methods both pass information to each other via a bridging process, which allows the position of the interface to be updated. The numerical scheme is applied to a series of problems involving a gas bubble submerged in a viscous liquid moving subject to both an externally generated flow and the influence of surface tension. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملODDLS: A new unstructured mesh finite element method for the analysis of free surface flow problems
This paper introduces a new stabilized finite element method based on the finite calculus (Comput. Methods Appl. Mech. Eng. 1998; 151:233–267) and arbitrary Lagrangian–Eulerian techniques (Comput. Methods Appl. Mech. Eng. 1998; 155:235–249) for the solution to free surface problems. The main innovation of this method is the application of an overlapping domain decomposition concept in the state...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 237 شماره
صفحات -
تاریخ انتشار 2013